

Bounding Box Regression With Uncertainty for Accurate Object Detection

¹Carnegie Mellon University ²Megvii Yihui He¹, Chenchen Zhu¹, Jianren Wang¹, Marios Savvides, ²Xiangyu Zhang

Ambiguity: inaccurate labelling

• MS-COCO

Ambiguity: inaccurate labelling

• MS-COCO

Ambiguity: introduced by occlusion

• MS-COCO

Ambiguity: object boundary itself is ambiguous

• YouTube-BoundingBoxes

Classification Score & Localization misalignment

MS-COCO

VGG-16

Faster RCNN

Modeling bounding box prediction

• Predict Gaussian distribution instead of a number

Modeling ground truth bounding box

• Dirac delta function

$$P_D(x) = \delta(x - x_g)$$

https://upload.wikimedia.org/wikipedia/commons/b/b4/Dirac_function_approximation.gif

Architecture

An additional fully-connected layer for prediction variance (1024 x 81 x 4)

Why KL Loss

(1) The ambiguities in a dataset can be successfully captured. The bounding box regressor gets smaller loss from ambiguous bounding boxes.

(2) The learned variance is useful during post-processing. We propose var voting (variance voting) to vote the location of a candidate box using its neighbors' locations weighted by the predicted variances during nonmaximum suppression (NMS).

(3) The learned probability distribution is interpretable. Since it reflects the level of uncertainty of the bounding box prediction, it can potentially be helpful in down-stream applications like self-driving cars and robotics

KL Loss: Degradation Case

KL Loss: Reparameterization trick

KL Loss: Rubust L1 Loss (Smooth L1 Loss)

- Larger IoU gets higher score
- Lower variance gets higher score
- Classification score invariance

 $p_{i} = e^{-(1 - IoU(b_{i}, b))^{2} / \sigma_{t}}$ $\sum_{i} p_{i} x_{i} / \sigma_{x, i}^{2}$

$$x = \frac{\sum_{i} p_i / \sigma_{x,i}^2}{\sum_{i} p_i / \sigma_{x,i}^2}$$

subject to $IoU(b_i, b) > 0$

Algorithm 1 var voting

 \mathcal{B} is $N \times 4$ matrix of initial detection boxes. \mathcal{S} contains corresponding detection scores. \mathcal{C} is $N \times 4$ matrix of corresponding variances. \mathcal{D} is the final set of detections. σ_t is a tunable parameter of var voting. The lines in blue and in green are soft-NMS and var voting respectively.

Before

after

Before

after

Before

after

Before

after

Ablation Study: KL Loss, soft-NMS, Variance Voting

- VGG-16
- MS-COCO

KL Loss	soft-NMS	var voting	AP	AP^{50}	AP^{75}	AP^S	AP^M	AP^L	AR^1	AR^{10}	AR^{100}
			23.6	44.6	22.8	6.7	25.9	36.3	23.3	33.6	34.3
	\checkmark		24.8	45.6	24.6	7.6	27.2	37.6	23.4	39.2	42.2
\checkmark			26.4	47.9	26.4	7.4	29.3	41.2	25.2	36.1	36.9
\checkmark		\checkmark	27.8	48.0	28.9	8.1	31.4	42.6	26.2	37.5	38.3
\checkmark	\checkmark		27.8	49.0	28.5	8.4	30.9	42.7	25.3	41.7	44.9
\checkmark	\checkmark	\checkmark	29.1	49.1	30.4	8.7	32.7	44.3	26.2	42.5	45.5

Ablation Study: does #params in head matter?

The Larger R-CNN head, the better

fast R-CNN head	backbone	KL Loss	AP
2mlp head	FPN	\checkmark	$37.9 \\ 38.5^{+0.6}$
2mlp head + mask	FPN	\checkmark	38.6 39.5 ^{+0.9}
conv5 head	RPN	\checkmark	36.5 38.0 ^{+1.5}

Ablation Study: Variance Voting Threshold

 σ_{t} = 0, standard NMS

Large σ_t : farther boxes are considered

$$p_i = e^{-(1 - IoU(b_i, b))^2} \sqrt{\sigma_t}$$
$$\sum_i p_i x_i / \sigma_{x_i}^2$$

$$x = \frac{\sum_{i} p_{i} / \sigma_{x,i}^{2}}{\sum_{i} p_{i} / \sigma_{x,i}^{2}}$$

subject to $IoU(b_{i}, b) > 0$

Improving State-of-the-Art

- Mask R-CNN
- MS-COCO

	AP	AP^{50}	AP^{60}	AP^{70}	AP ⁸⁰	AP^{90}
baseline [14]	38.6	59.8	55.3	47.7	34.4	11.3
MR-CNN [11]	38.9	59.8	55.5	48.1	$34.8^{+0.4}$	$11.9^{+0.6}$
soft-NMS [1]	39.3	59.7	55.6	48.9	$35.9^{+1.5}$	$12.0^{+0.7}$
IoU-NMS+Refine [27]	39.2	57.9	53.6	47.4	$36.5^{+2.1}$	$16.4^{+5.1}$
KL Loss	39.5 ^{+0.9}	58.9	54.4	47.6	$36.0^{+1.6}$	$15.8^{+4.5}$
KL Loss+var voting	$39.9^{+1.3}$	58.9	54.4	47.7	$36.4^{+2.0}$	$17.0^{+5.7}$
KL Loss+var voting+soft-NMS	40.4 ^{+1.8}	58.7	54.6	48.5	37.5 ^{+3.3}	$17.5^{+6.2}$

Inference Latency

- VGG-16
- single image
- single GTX 1080 Ti GPU

method	latency (ms)
baseline	99
ours	101

2ms

Other models on MS-COCO

type	method	AP	AP ⁵⁰	AP^{75}	AP^S	\mathbf{AP}^M	AP^L
	baseline (1x schedule) [14]	36.4	58.4	39.3	20.3	39.8	48.1
	baseline (2x schedule) [14]	36.8	58.4	39.5	19.8	39.5	49.5
	IoU-NMS [27]	37.3	56.0	-	-	-	-
fast R-CNN	soft-NMS [1]	37.4	58.2	41.0	20.3	40.2	50.1
	KL Loss	37.2	57.2	39.9	19.8	39.7	50.1
	KL Loss+var voting	37.5	56.5	40.1	19.4	40.2	51.6
	KL Loss+var voting+soft-NMS	38.0	56.4	41.2	19.8	40.6	52.3
Faster R-CNN	baseline (1x schedule) [14]	36.7	58.4	39.6	21.1	39.8	48.1
	IoU-Net [27]	37.0	58.3	-	-	-	-
	IoU-Net+IoU-NMS [27]	37.6	56.2	-	-	-	-
	baseline (2x schedule) [14]	37.9	59.2	41.1	21.5	41.1	49.9
	IoU-Net+IoU-NMS+Refine [27]	38.1	56.3	-	-	-	-
	soft-NMS[1]	38.6	59.3	42.4	21.9	41.9	50.7
	KL Loss	38.5	57.8	41.2	20.9	41.2	51.5
	KL Loss+var voting	38.8	57.8	41.6	21.0	41.5	52.0
	KL Loss+var voting+soft-NMS	39.2	57.6	42.5	21.2	41.8	52.5

VGG on PASCAL VOC

backbone	method	mAP
	baseline	60.4
VGG-CNN-	KL Loss	62.0
M-1024	KL Loss+var voting	62.8
	KL Loss+var voting+soft-NMS	63.6
	baseline	68.7
	QUBO (tabu) [46]	60.6
	QUBO (greedy) [46]	61.9
VGG-16	soft-NMS [1]	70.1
	KL Loss	69.7
	KL Loss+var voting	70.2
	KL Loss+var voting+soft-NMS	71.6

Join us at Tuesday Afternoon Poster Session #41

Bounding Box Regression with Uncertainty for Accurate Object Detection

acquire variances with KL Loss

var voting

